(本小题满分12分)已知方程的系数a在[0,2]内取值,b在[0,3]内取值,求使方程没有实根的概率.
(本小题满分12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
天数t(天) |
3 |
4 |
5 |
6 |
7 |
繁殖个数y(千个) |
2.5 |
3 |
4 |
4.5 |
6 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,
.
【原创】(本小题满分12分)已知.
(Ⅰ)求函数的最小正周期和对称中心;
(Ⅱ)将函数的图象向右平移个单位,得到函数
的图象,当时,方程
有实数解,求实数的取值范围.
(本小题满分7分)选修4—5:不等式选讲
已知函数,
, 若
恒成立,实数
的最大值为
.
(Ⅰ)求实数.
(Ⅱ)已知实数满足
且
的最大值是
,求
的值.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,圆
的参数方程
为参数).以
为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线
与圆
的交点为
,与直线
的交点为
,求线段
的长.
(本小题满分7分)选修4—2:矩阵与变换
已知矩阵
(Ⅰ)求A的逆矩阵A-1;
(Ⅱ)求A的特征值及对应的特征向量。