可看成质点的小球,在距地面h=3.2m处,以=10m/s的初速度斜向上抛出,如图,初速度方向与水平面的夹角
,不计空气阻力,g=10m/s2,以下判断中正确的是( )
A.小球运动到最高点时速度为零 |
B.小球从抛出到落到地面所花的时间 t = 1.6s |
C.小球落地点距抛出点的水平距离为16m |
D.小球在落地之前的运动过程中,水平方向的速度始终保持不变 |
质量均为m的滑块A和B紧靠着一起从固定斜面顶端由静止开始下滑,与斜面之间的摩擦因数分别为μ1和μ2,且μ1>μ2,在此过程中,物块B对A的压力为
A.![]() |
B.![]() |
C.![]() |
D.0 |
真空中有一静电场,其中有一条电场线为直线,沿该电场线方向电势φ随距离x的变化关系如图所示,根据图象可以判断
A.可能是一个正点电荷形成的电场 |
B.可能是两个等量同种正点电荷形成的电场 |
C.可能是两个等量异种电荷形成的电场 |
D.可能是一个负点电荷形成的电场 |
磁铁和电流都能产生磁场,而通电螺线管和条形磁铁的磁场十分相似,安培由此提出著名的分子电流假说,关于分子电流假说分析正确的是
A.由于磁铁内部分子的定向移动而形成分子电流导致磁铁周围产生磁场 |
B.铁棒受到外界磁场作用时,各分子电流的取向变得大致相同,铁棒各处显示出同样强度的磁场 |
C.高温可以使磁体失去磁性,而猛烈的敲击则不会使磁体失去磁性 |
D.安培分子电流假说揭示出磁场是由电荷的运动产生的 |
如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓冲车厢.在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN.缓冲车的底部,安装电磁铁(图中未画出),能产生垂直于导轨平面向下的匀强磁场,磁场的磁感应强度大小为B.导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈,线圈的总电阻为R,匝数为n,
边长为L.假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,而缓冲车厢继续向前移动距离L后速度为零。已知缓冲车厢与障碍物和线圈的ab边均没有接触,不计一切摩擦阻力。在这个缓冲过程中,下列说法正确的是
A.线圈中的感应电流沿逆时针方向(俯视),且最大感应电流为BLv0/R
B.线圈对轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲
C.此过程中,通过线圈abcd的电荷量为
D.此过程中,线圈abcd产生的焦耳热为
如图所示,竖直平面内光滑圆弧形管道MC半径为R,它与水平管道CD恰好相切。水平面内的等边三角形ABC的边长为L,顶点C恰好位于圆周最低点,CD是AB边的中垂线。在A、B两顶点上放置一对等量异种电荷,各自所带电荷量为q。现把质量为m、带电荷量为+Q的小球(小球直径略小于管道内径)由圆弧形管道的最高点M处静止释放,不计+Q对原电场的影响以及带电量的损失,取无穷远处为零电势,静电力常量为k,重力加速度为g,则
A.D点的电场强度大于C点
B.D点的电势大于C点
C.小球在管道中运动时,机械能不守恒
D.小球对圆弧形管道最低点C处的压力大小为