在中,角A、B、C的对边分
别为a.b.c,且满足
,
,
边上中线
的长为
.
(本小题满分12分)已知点是圆
上任意一点,点
与点
关于原点对称.线段
的中垂线
分别与
交于
两点.
(1)求点的轨迹
的方程;
(2)斜率为1的直线与曲线
交于
两点,若
(
为坐标原点),求直线
的方程.
(本小题满分12分)如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,
,E是SA的中点.
(1)求证:平面BED平面SAB;
(2)求直线SA与平面BED所成角的大小.
已知函数.
(1)若关于的方程
只有一个实数解,求实数
的取值范围;
(2)若当时,不等式
恒成立,求实数
的取值范围。
(本小题满分16分)
如图,椭圆的右焦点为
,右准线为
,
(1)求到点和直线
的距离相等的点
的轨迹方程。
(2)过点作直线交椭圆
于点
,又直线
交
于点
,若
,
求线段的长;
(3)已知点的坐标为
,直线
交直线
于点
,且和椭圆
的一个交点为点
,是否存在实数
,使得
,若存在,求出实数
;若不存在,请说明理由。
(本小题满分14分)
为了解学生升高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:
(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185cm之间的概率;
(Ⅲ)从样本中身高在165~180cm之间的女生中任选2人,求至少有1人身高在170~18cm之间的概率。