已知三棱柱的侧棱长和底面边长均为2,
在底面ABC内的射影O为底面△ABC的中心,如图所示:
(1)联结,求异面直线
与
所成角的大小;
(2)联结、
,求三棱锥C1-BCA1的体积.
已知函数.
(1)当时,求函数
的单调区间;
(2)当时,若
,
恒成立,求实数
的最小值;
(3)证明.
如图,在平面直角坐标系中,已知抛物线
,设点
,
,
为抛物线
上的动点(异于顶点),连结
并延长交抛物线
于点
,连结
、
并分别延长交抛物线
于点
、
,连结
,设
、
的斜率存在且分别为
、
.
(1)若,
,
,求
;
(2)是否存在与无关的常数
,是的
恒成立,若存在,请将
用
、
表示出来;若不存在请说明理由.
设关于不等式
的解集为
,且
,
.
(1),
恒成立,且
,求
的值;
(2)若,求
的最小值并指出取得最小值时
的值.
某英语学习小组共12名同学进行英语听力测试,随机抽取6名同学的测试成绩(单位:分),用茎叶图记录如下,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本均值;
(2)成绩高于样本均值的同学为优秀,根据茎叶图估计该小组12名同学中有几名优秀同学;
(3)从该小组12名同学中任取2人,求仅有1人是来自随机抽取6人中优秀同学的概率.