游客
题文

(本小题满分13分)
已知抛物线的焦点为,过点作直线交抛物线两点;椭圆的中心在原点,焦点在轴上,点是它的一个顶点,且其离心率
(1)求椭圆的方程;
(2)经过两点分别作抛物线的切线,切线相交于点.证明:
(3)椭圆上是否存在一点,经过点作抛物线的两条切线为切点),使得直线过点?若存在,求出抛物线与切线所围成图形的面积;若不存在,试说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

如果双曲线与双曲线的焦点在同一坐标轴上且它们的虚轴长和实轴长的比值相等,则称他们为平行双曲线.已知双曲线M与双曲线为平行双曲线,且点(2,0)在双曲线M上.
(1)求双曲线M的方程;
(2) 设P是双曲线M上的任一点,点A的坐标为(3,0),求|PA|的最小值.

已知椭圆
的公共弦过椭圆的右焦点。
⑴当轴时,求的值,并判断抛物线的焦点是否在直线上;
⑵若,且抛物线的焦点在直线上,求的值及直线AB的方程。

⑴求过点向圆所引的切线方程;
⑵过点向圆引二条切线,切点分别是,求直线的方程。

在正方体
,求所成角的正弦值。

在正方体中,
⑴求证:∥平面
⑵求与平面所成的角。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号