(本小题满分12分)为了更好的开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”、 “街舞”、“动漫”、“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)
社团 |
相关人数 |
抽取人数 |
模拟联合国 |
24 |
![]() |
街舞 |
18 |
3 |
动漫 |
![]() |
4 |
话剧 |
12 |
![]() |
(Ⅰ)求,
,
的值;
(Ⅱ)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.
已知点A(2,0),B(0,2),点C(x,y)在单位圆上.
(1)若|+
|=
(O为坐标原点),求
与
的夹角;
(2)若⊥
,求点C的坐标.
已知,用单位圆求证下面的不等式:
(1)sinx<x<tanx;
(2).
如图,A、B是单位圆O上的点,C是圆O与x轴正半轴的交点,点A的坐标为,三角形AOB为直角三角形.
(1)求sin∠COA,cos∠COA的值;
(2)求cos∠COB的值.
已知函数,其中函数
在
上是减函数.
(1)求曲线在点
处的切线方程;
(2)若在
上恒成立,求
得取值范围.
(3)关于的方程
,
有两个实根,求
的取值范围.
)设满足约束条件:
的可行域为
.
(1)求的最大值与
的最小值;
(2)若存在正实数,使函数
的图象经过区域
中的点,求这时
的取值范围.