(本小题满分12分)
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
组号 |
分组 |
频数 |
频率 |
第1组 |
![]() |
5 |
0.050 |
第2组 |
![]() |
① |
0.350 |
第3组 |
![]() |
30 |
② |
第4组 |
![]() |
20 |
0.200 |
第5组 |
![]() |
10 |
0.100 |
合计 |
100 |
1.00 |
设全集为R,集合,
.
(1)求;
(2)已知,若
,求实数
的取值范围.
设数列的前
项和为
,已知
,
,
.
(1)求数列的通项公式;
(2)证明:对一切正整数,有
.
(本小题满分13分)已知椭圆:
(
)的焦距为
,且过点
.
(1)求椭圆的方程和离心率;
(2)设(
)为椭圆
上一点,过点
作
轴的垂线,垂足为
.取点
,连 结
,过点
作
的垂线交
轴于点
,点
是点
关于
轴的对称点.试判断直线
与椭圆
的位置关系,并证明你的结论.
(本小题满分13分)已知函数.
(1)求函数的最大值;
(2)若函数与
有相同极值点,
(ⅰ)求实数的值;
(ⅱ)若对于,不等式
恒成立,求实数
的取值范围.
(本题满分12分)如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=
.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PA与平面PBC所成角的正弦值;
(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?