甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为
(棵),乙班植树的总量为
(棵),两班一起植树所用的时间(从甲班开始植树时计时)为
(时),
、
分别与
之间的部分函数图象如图9
所示.
(1)当0≤x≤6时,分别求、
与
之间的函数关系式;
(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过
棵.
先化简,再求值:,其中a=sin30°,b=tan45°
如图(1),直线与x轴交于点A、与y轴交于点D,以AD为腰,以x轴为底作等腰梯形ABCD(AB>CD),且等腰梯形的面积是8
,抛物线经过等腰梯形的四个顶点.
图(1)
(1) 求抛物线的解析式;
(2) 如图(2)若点P为BC上的—个动点(与B、C不重合),以P为圆心,BP长为半径作圆,与轴的另一个交点为E,作EF⊥AD,垂足为F,请判断EF与⊙P的位置关系,并给以证明;
图(2)
(3) 在(2)的条件下,是否存在点P,使⊙P与y轴相切,如果存在,请求出点P的坐标;如果不存在,请说明理由.
如图,在△ABC中,已知AB=BC=AC=4cm,于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s,点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为t(s),
(1)求t为何值时,;
(2)当时,求证:AD平分△PQD的面积;
(3)当时,求△PQD面积的最大值.
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AC=3cm,求DE的长.
莲花山公园管理处计划购买甲、乙两种花木共6000株,甲种花木每株0.5元,乙种花木每株0.8元.相关资料表明:甲、乙两种花木的成活率分别为90%和95%.
(1)若购买这批花木共用了3600元,求甲、乙两种花木各购买了多少株?
(2)若要使这批花木的成活率不低于93%,且购买花木的总费用最低,应如何选购花木?