游客
题文

莲花山公园管理处计划购买甲、乙两种花木共6000株,甲种花木每株0.5元,乙种花木每株0.8元.相关资料表明:甲、乙两种花木的成活率分别为90%和95%.
(1)若购买这批花木共用了3600元,求甲、乙两种花木各购买了多少株?
(2)若要使这批花木的成活率不低于93%,且购买花木的总费用最低,应如何选购花木?

科目 数学   题型 解答题   难度 中等
知识点: 含绝对值的一元一次不等式
登录免费查看答案和解析
相关试题

将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)按如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.

(1)求∠ADE的度数;
(2)将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,如图②,试判断的值是否随着α的变化而变化?如果不变,请求出的值;如果变化,请说明理由.

目前节能灯在城市已基本普及,今年某省面向县级及农村地区推广,为响应号召,某商场计划购进甲、乙两种型号节能灯共1200只,这两种型号节能灯的进货价、销售价如下表:


进货价(元/只)
销售价(元/只)
甲型
25
30
乙型
45
60


(1)问购进甲、乙两种节能灯各多少只,进货款恰好为46000元?
(2)如果商场在销售完节能灯时所获利润不超过进货款的30%情况下,如何进货才能使该商场销售完节能灯所获利润最大,最大利润是多少元?

如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,连接AD.在AC上取一点E,使得ED=EA.

(1)求证:ED是⊙O的切线;
(2)当OA=3,AE=4时,求BC的长度.

如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.

(1)求证:△AOE≌△COD;
(2)若∠OCD=30°,AB=,求△AOC的面积.

某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:

(1)求被调查的学生人数;
(2)补全条形统计图;
(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号