(本小题满分12分)
已知函数
(Ⅰ)若曲线在
处的切线平行于直线
,求函数
的单调区间;
(Ⅱ)若函数在
上有两个零点,求实数
的取值范围。
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请在答题纸上所选题目题号的方框内打“√”。
已知向量,函数
.
(1) 求函数的最大值,并写出相应
的取值集合;
(2) 若,且
,求
的值.
已知半径为的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于
两点,求实数
的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.
已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.
(2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
设直线与直线
交于
点.
(1)当直线过
点,且与直线
垂直时,求直线
的方程;
(2)当直线过
点,且坐标原点
到直线
的距离为
时,求直线
的方程.