(本小题满分12分)
设数列的各项都为正数,其前
项和为
,已知对任意
,
是
和
的等比中项.
(Ⅰ)证明数列为等差数列,并求数列
的通项公式;
(Ⅱ)证明;
(Ⅲ)设集合,
,且
,若存在
∈
,使对满足
的一切正整数
,不等式
恒成立,求这样的正整数
共有多少个?
x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.求:
(Ⅰ)输出的x(x<6)的概率;
(Ⅱ)输出的x(6<x≤8)的概率.
已知x>0,y>0,且x+8y﹣xy=0.求:
(Ⅰ)xy的最小值;
(Ⅱ)x+y的最小值.
已知x,y满足约束条件,求目标函数z=x+2y+2的最大值和最小值.
某公路段在某一时刻内监测到的车速频率分布直方图如图所示.
(Ⅰ)求纵坐标中参数h的值及第三个小长方形的面积;
(Ⅱ)求车速的众数v1,中位数v2的估计值;
(Ⅲ)求平均车速的估计值.
袋中又大小相同的红球和白球各1个,每次任取1个,有放回地摸三次.
(Ⅰ)写出所有基本事件‘
(Ⅱ)求三次摸到的球恰有两次颜色相同的概率;
(Ⅲ)求三次摸到的球至少有1个白球的概率.