(本小题满分12分)
已知双曲线:
的
左焦点为
,左准线
与
轴的交点是圆
的圆心,圆
恰好经过坐标原点
,设
是圆
上任意一点.
(Ⅰ)求圆的方程;
(Ⅱ)若直线与直线
交于点
,且
为线段
的中点,求直线
被圆
所截得的弦长;
(Ⅲ)在平面上是否存在定点,使得对圆
上任意的点
有
?若存在,求出点
的坐标;若不存在,请说明理由.
已知函数,且
的解集为
.
(1)求的值;
(2)若,且
,求证:
.
已知曲线(t为参数),
(
为参数).
(1)化,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)过曲线的左顶点且倾斜角为
的直线
交曲线
于
两点,求
.
直线AB经过⊙O上的点C,并且OA=OB,CA=CB.⊙O交直线OB于E,D,连接EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=,⊙O的半径为3,求OA的长.
已知函数在
处取得极值
.
(1)求的表达式;
(2)设函数.若对于任意的
,总存在唯一的
,使得
,求实数
的取值范围.
给定椭圆:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的动点,过点
作椭圆的切线
交“准圆”于点
.
(ⅰ)当点为“准圆”与
轴正半轴的交点时,求直线
的方程并证明
;
(ⅱ)求证:线段的长为定值.