给定椭圆:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的动点,过点
作椭圆的切线
交“准圆”于点
.
(ⅰ)当点为“准圆”与
轴正半轴的交点时,求直线
的方程并证明
;
(ⅱ)求证:线段的长为定值.
(满分10分)在△ABC中,角A,B,C所对的边分别为,已知
。
(1)求A的大小;
(2)如果,
,求△ABC的面积。
已知函数.
(1)若函数在
处取极值,求
的值;
(2)如图,设直线将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),若函数
的图象恰好位于其中一个区域内,判断其所在的区域并求对应的
的取值范围;
(3)比较与
的大小,并说明理由.
如图所示,在棱长为2的正方体中,点
分别在棱
上,满足
,且
.
(1)试确定、
两点的位置.
(2)求二面角大小的余弦值.
已知曲线的极坐标方程为
,以极点为原点,极轴为
轴的非负半轴建立平面直角坐标系,并与极坐标系取相同的单位长度,直线l的参数方程为
(
为参数),求直线l被曲线
截得的线段长度.
已知矩阵M =,N =
,试求曲线
在矩阵MN变换下的函数解析式.