某高校从今年参加自主招生考试的学生中随机抽取容量为的学生成绩样本,得到频率分布表如下:
组数 |
分组 |
频数 |
频率 |
第一组 |
[230,235) |
8 |
0.16 |
第二组 |
[235,240) |
![]() |
0.24 |
第三组 |
[240,245) |
15 |
![]() |
第四组 |
[245,250) |
10 |
0.20 |
第五组 |
[250,255] |
5 |
0.10 |
合计 |
![]() |
1.00 |
(1)求的值;
(2)为了选拔出更加优秀的学生,该高校决定在第三、四、五组中用分层抽样的方法抽取6名学生进行第二轮考核,分别求第三、四、五组参加考核的人数;
(3)在(2)的前提下,高校决定从这6名学生中择优录取2名学生,求2人中至少有1人是第四组的概率.
(1)已知数列的前n项和为
,若
,求
(2)等差数列的前n项和记为
,已知
,求n.
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。
(1)求双曲线C2的方程;
(2)若直线l:与双曲线C2恒有两个不同的交点A和B,且
(其中O为原点),求k的取值范围。
已知双曲线的两个焦点为
、
点
在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出关于
的线性回归方程
;
(3)已知该厂技术改造前吨甲产品能耗为
吨标准煤;试根据(2)求出的线性回归方程,预测生产
吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
已知中心在原点,一焦点为的椭圆被直线
截得的弦的中点横坐标为
,求此椭圆的方程。