(本小题满分12分)
如图,平面ABCD⊥平面PAD,△APD是直角三角形,
∠APD=90°,四边形ABCD是直角梯形,其中BCAD,
∠BAD=90°,AD="2" BC,且AB=BC=PD=2,O是AD的中点,E,F分别是PC,OD的中点.
(Ⅰ)求证:EF平面PBO;
(Ⅱ)求二面角A- PF - E的正切值.
已知在点(1,f(1))处的切线方程为
。
(1)求f(x)的表达式;
(2)若f(x)满足恒成立,则称f(x)为g(x)的一个“上界函数”,如果f(x)为
的一个“上界函数”,求t的取值范围;
(3)当m>0时讨论在区间(0,2)上极值点的个数。
设Sn为数列{an}为前n项和,对任意的都有
(m为常数且m>0)
(1)求证:{an}为等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足,求数列{bn}的通项公式;
(3)在(2)的条件下,求数列的前n项和Tn。
已知函数f(x)和g(x)的图象关于原点对称,且
(1)求函数g(x)的解析式;
(2)解不等式;
(3)若在[-1,1]上是增函数,求实数
的取值范围。
在△ABC中,A、B、C的对边分别为a、b、c,且满足。(1)求B的大小;
(2)设,且
的最大值为5,求k的值。
设命题p:函数的定义域为R;
命题q:不等式对一切正实数x均成立。
如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围。