已知在点(1,f(1))处的切线方程为。(1)求f(x)的表达式;(2)若f(x)满足恒成立,则称f(x)为g(x)的一个“上界函数”,如果f(x)为的一个“上界函数”,求t的取值范围;(3)当m>0时讨论在区间(0,2)上极值点的个数。
函数=的定义域为,集合=, (1)求:集合;(2)若,求的取值范围.
计算:⑴ ;⑵.
已知函数(,),. (Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立; (Ⅱ)记,若在上单调递增,求实数的取值范围;
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。 (Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。 (Ⅱ)若的面积为,求向量的夹角;
已知为等比数列,是等差数列, (Ⅰ)求数列的通项公式及前项和; (2)设,,其中,试比较与的大小,并加以证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号