(本题14分)
(1)将一颗骰子(正方体形状)先后抛掷2次,得到的点数分别记为,
求及
的概率;
(2)从区间中随机取两个数
,求
的概率.
(本小题满分13分)
如图, 是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
(本小题满分13分)
直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点)。
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(本小题满分13分)
已知数列满足:
,其中
为数列
的前
项和.
(Ⅰ)试求的通项公式;
(Ⅱ)若数列满足:
,试求
的前
项和公式
.
(本小题满分13分)
如图,在平面直角坐标系中,锐角的终边分别与单位圆交于
两点.
(Ⅰ)如果,点
的横坐标为
,求
的值;
(Ⅱ)已知点,求函数
的值域.
已知函数.
(1)求的定义域;
(2)在函数的图像上是否存在不同的两点,使过此两点的直线平行于
轴;
(3)当满足什么关系时,
在
上恒取正值.