如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为
的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )
A.![]() |
B.![]() |
C.![]() |
| D.与a的值有关联 |

集合 , ,则 ()
| A. | B. | C. | D. |
设函数 , 是公差为 的等差数列, ,则 ()
| A. | B. | C. | D. |
方程 中的 ,且 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()
| A. | 60条 | B. | 62条 | C. | 71条 | D. | 80条 |
如图,半径为 的半球 的底面圆 在平面 内,过点 作平面 的垂线交半球面于点 ,过圆 的直径 作平面 成 角的平面与半球面相交,所得交线上到平面 的距离最大的点为 ,该交线上的一点 满足 ,则 、 两点间的球面距离为()

| A. | B. | C. | D. |
某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗 原料1千克、 原料2千克;生产乙产品1桶需耗 原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗 、 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
| A. | 1800元 | B. | 2400元 | C. | 2800元 | D. | 3100元 |