((本小题满分12分)
已知椭圆:
的右焦点为F,离心率
,椭圆C上的点到F的距离的最大值为
,直线l过点F与椭圆C交于不同的两点A、B.
(1) 求椭圆C的方程;
(2) 若,求直线l的方程.
(本题12分)
中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且
,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7。求这两条曲线的方程.
(本题10分)
求证:△ABC是等边三角形的充要条件是a2+b2+c2=ab+ac+bc。这里a、b、c是△ABC的三条边。
( 14分)
已知椭圆C的中心为直角坐标系x0y的原点,焦点在轴上,它的一个项点到两个焦点的距离分别是7和1
(1)求椭圆C的方程
(2)若为椭圆C的动点,M为过P且垂直于
轴的直线上的点,
(e为椭圆C的离心率),求点M的轨迹方程,并说明轨迹是什么曲线。
已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆左顶点作直线l垂直于x轴
,若动点M到椭圆右焦点的距离比它到直线l的距离小4,求点M的轨迹方程.
过抛物线y2=4x的焦点F作直线l,交抛物线于A、B两点,若线段AB的中点的横坐标为3,求|AB|