游客
题文

(本小题满分12分)
在棱长为1的正方体中,分别是棱的中点.
(1)证明:平面
(2)证明:
(3)求三棱锥的体积.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

为综合治理交通拥堵状况,缓解机动车过快增长势头,一些大城市出台了“机动车摇号上牌”的新规.某大城市2012年初机动车的保有量为600万辆,预计此后每年将报废本年度机动车保有量的5%,且报废后机动车的牌照不再使用,同时每年投放10万辆的机动车牌号,只有摇号获得指标的机动车才能上牌.经调研,获得摇号指标的市民通常都会在当年购买机动车上牌.
(1)问:到2016年初,该城市的机动车保有量为多少万辆;
(2)根据该城市交通建设规划要求,预计机动车的保有量少于500万辆时,该城市交通拥堵状况才真正得到缓解.问:至少需要多少年可以实现这一目标.
(参考数据:

如图所示,在四面体中,两两互相垂直,且

(1)求证:平面平面
(2)求二面角的大小;
(3)若直线与平面所成的角为,求线段的长度.

已知函数,且的最大值为2,其图象相邻两对称轴间的距离为2,并过点
(1)求的值;
(2)若函数上的图象与轴的交点分别为,求的夹角.

从某校高三年级800名学生中随机抽取50名测量身高.据测量,被抽取的学生的身高全部介于155cm和195cm之间,将测量结果分成八组得到的频率分布直方图如下:

(1)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;
(2)在样本中,若学校决定身高在185cm以上的学生中随机抽取2名学生接受某军校考官进行面试,求:身高在190cm以上的学生中至少有一名学生接受面试的概率.

(本小题满分13分)
设函数对任意的实数,都有,且当时,
(1)若时,求的解析式;
(2)对于函数,试问:在它的图象上是否存在点,使得函数在点处的切线与平行。若存在,那么这样的点有几个;若不存在,说明理由。
(3)已知,且 ,记,求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号