(
某园林公司计划在一块为圆心,
(
为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形
区域用于观赏样板地,
区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设, ,用
表示弓形
的面积
;
(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的
(参考公式:扇形面积公式,
表示扇形的弧长)
已知直线l1:x+a2y+1=0和直线l2:(a2+1)x-by+3=0(a,b∈R).
(1)若l1∥l2,求b的取值范围;
(2)若l1⊥l2,求|ab|的最小值.
如图所示,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.
已知线段PQ两端点的坐标分别为(-1,1)、(2,2),若直线l:x+my+m=0与线段PQ有交点,求m的取值范围.
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.