(本小题满分12分)
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
[140,150] |
频数 |
2 |
3 |
10 |
15 |
15 |
x |
3 |
1 |
乙校:
分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
[140,150] |
频数 |
1 |
2 |
9 |
8 |
10 |
10 |
y |
3 |
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
|
甲校 |
乙校 |
总计 |
优秀 |
|
|
|
非优秀 |
|
|
|
总计 |
|
|
|
附:
![]() |
0.10 |
0.025 |
0.010 |
![]() |
2.706 |
5.024 |
6.635 |
已知.
(1)若曲线在
处的切线与直线
平行,求a的值;
(2)当时,求
的单调区间.
如图,椭圆上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:;
(3)过且与AB垂直的直线交椭圆于P、Q,若
的面积是20
,求此时椭圆的方程.
设函数.
(1)若在
时有极值,求实数
的值和
的极大值;
(2)若在定义域上是增函数,求实数
的取值范围.
已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;