:某公园准备建一个摩天轮,摩天轮的外围是一个周长为米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为
元/根,且当两相邻的座位之间的圆弧长为
米时,相邻两座位之间的钢管和其中一个座位的总费用为
元。假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为
元。
(1)试写出关于
的函数关系式,并写出定义域;(2)当
米时,试确定座位的个数,使得总造价最低?
已知数列满足:
且
.
(1)令,判断
是否为等差数列,并求出
;
(2)记的前
项的和为
,求
.
如图,在四棱锥中,底面
为正方形,
平面
,已知
,
为线段
的中点.
(1)求证:平面
;
(2)求四棱锥的体积.
已知函数.
(1)从区间内任取一个实数
,设事件
={函数
在区间
上有两个不同的零点},求事件
发生的概率;
(2)若连续掷两次骰子(骰子六个面上标注的点数分别为)得到的点数分别为
和
,记事件
{
在
恒成立},求事件
发生的概率.
已知函数,
.
(1)求函数的最小正周期和单调递增区间;
(2)若函数图象上的两点
的横坐标依次为
,
为坐标原点,求
的外接圆的面积.
已知函数,
满足
,且
,
为自然对数的底数.
(1)已知,求
在
处的切线方程;
(2)若存在,使得
成立,求
的取值范围;
(3)设函数,
为坐标原点,若对于
在
时的图象上的任一点
,在曲线
上总存在一点
,使得
,且
的中点在
轴上,求
的取值范围.