游客
题文

如图①,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O。

(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图②,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R。四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积。

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图,在△ABC中,∠C=90°.
(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.

先化简,再求值:,其中

解一元一次不等式组:,并写出所有的整数解.

已知:二次函数轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.

(1)请直接写出点A、B的坐标,并求出该二次函数的解析式。
(2)如图1,在二次函数对称轴上是否存在点P,使的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合). 过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当面积S最大时,求m的值.

如图所示,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.

(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=,求⊙O的半径

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号