((本小题满分12分)
已知椭圆的中心为坐标原点O,焦点在x轴上,椭圆短半轴长为1,动点
在直线
上。
(1)求椭圆的标准方程
(2)求以OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
已知函数,
(1)求在
处切线方程;
(2)求证:函数在区间
上单调递减;
(3)若不等式对任意的
都成立,求实数
的最大值.
已知函数,
(1)讨论函数的单调性;
(2)证明:.
已知二次函数若对于任意
,恒有
成立,不等式
的解集为A,
(1)求集合A;
(2)设集合,若集合B是集合A的子集,求
的取值范围.
某中学高三年级从甲、乙两个班级各选出七名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,
(1)求x和y的值;
(2)计算甲班七名学生成绩的方差;
(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.
参考公式:方差其中
已知函数(1)求
的单调减区间;(2)在锐角三角形ABC中,A、B、C的对边
且满足
,求
的取值范围.