第十一届西博会于2010年10月22日至26日在蓉举行,本届西博会以“绿色改变生活,技术引领发展”为主题。如此重要的国际盛会,自然少不了志愿者这支重要力量,“志愿者,西博会最亮丽的风景线”,通过他们的努力和付出,已把志愿者服务精神的种子播撒到人们心中。某大学对参加了本次西博会的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分。假设该校志愿者甲、乙、丙考核为优秀的概率分别为、
、
,他们考核所得的等次相互独立。
(I)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;
(II)求在这次考核中甲、乙、丙三名志愿者所得学分之和为整数的概率。
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点
的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率的直线
使直线
与椭圆相交于不同的两点M,N满足
,若存在,求直线l的方程;若不存在,说明理由。
设函数.
(1)求f(x)的单调区间和极值;
(2)关于的方程f(x)=a在区间
上有两个根,求a的取值范围.
已知抛物线.命题p: 直线l1:
与抛物线C有公共点.命题q: 直线l2:
被抛物线C所截得的线段长大于2.若
为假,
为真,求k的取值范围.
已知圆C过原点且与相切,且圆心C在直线
上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且
, 求直线l的方程.
已知关于的不等式
的解集为
.
(1)求实数a,b的值;
(2)解关于的不等式
(c为常数).