第十一届西博会于2010年10月22日至26日在蓉举行,本届西博会以“绿色改变生活,技术引领发展”为主题。如此重要的国际盛会,自然少不了志愿者这支重要力量,“志愿者,西博会最亮丽的风景线”,通过他们的努力和付出,已把志愿者服务精神的种子播撒到人们心中。某大学对参加了本次西博会的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分。假设该校志愿者甲、乙、丙考核为优秀的概率分别为、
、
,他们考核所得的等次相互独立。
(I)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;
(II)求在这次考核中甲、乙、丙三名志愿者所得学分之和为整数的概率。
(本小题满分14分)已知函数,其中
.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,求函数
的单调区间与极值.
(本小题满分14分)已知圆过点
, 且在
轴上截得的弦
的长为
.
(1) 求圆的圆心的轨迹方程;
(2) 若, 求圆
的方程.
(本小题满分14分)设数列的前
项和为
,点
均在函数
的图像上.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,
是数列
的前
项和,求使得
对所有
都成立的最小正整数
.
(本小题满分13分)如图,正方形所在平面与三角形
所在平面相交于
,
平面
,且
,
(1)求证:平面
;
(2)求凸多面体的体积.
(本小题满分13分)
一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:
(Ⅰ)连续取两次都是白球的概率;
(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.