(本小题满分14分)已知定义在上的函数
,满足条件:①
,②对非零实数
,都有
.
(1)求函数的解析式;
(2)设函数,直线
分别与函数
,
交于
、
两点,(其中
);设
,
为数列
的前
项和,求证:当
时,
.
设数列{}的前n项和为
,且
.
⑴证明数列{}为等比数列
⑵求{}的前n项和
已知椭圆过点
,且离心率
.
(1)求椭圆C的方程;
(2)已知过点的直线
与该椭圆相交于A、B两点,试问:在直线
上是否存在点P,使得
是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.
已知函数.
(1)当时,设
.讨论函数
的单调性;
(2)证明当.
如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面
平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.
已知等差数列的首项
,公差
,数列
是等比数列,且
.
(1)求数列和
的通项公式;
(2)设数列对任意正整数n,均有
成立,求
的值.