(本小题满分12分)已知抛物线的焦点为,其准线与轴交于点,过作直线与抛物线在第一象限的部分交于两点,其中在之间。直线与抛物线的另一个交点为。(Ⅰ)求证:点与关于轴对称。(Ⅱ)若的内切圆半径,求的值。
解关于不等式:
已知函数. (1)当时,求的单调区间; (2)若函数在上无零点,求的最小值。
如图,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称. (1)若点的坐标为,求的值; (2)若椭圆上存在点,使得,求的取值范围.
数列的各项都是正数,前项和为,且对任意,都有. (1)求证:;(2)求数列的通项公式。
如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (1)证明:平面; (2)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号