如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (1)证明:平面; (2)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
设且对于二项式 (1)当时,分别将该二项式表示为的形式; (2)求证:存在使得等式与同时成立.
如图,在菱形中,沿对角线将△折起,使之间的距离为若分别为线段上的动点 (1)求线段长度的最小值; (2)当线段长度最小时,求直线与平面所成角的正弦值
已知都是正数,求证:
已知曲线的参数方程为为参数),在平面直角坐标系中,以坐标原点为极点,轴的非负半轴极轴建立极坐标系,曲线的极坐标方程为,求与交点的极坐标,其中
已知矩阵的逆矩阵,求曲线在矩阵对应的交换作用下所得的曲线方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号