(14分) 点,圆
与椭圆
有一个公共点
,
分别是椭圆的左右焦点,直线
与圆
相切.
(1)求的值;(2)求椭圆
的方程。
(本题8分)已知等差数列满足:
,
的前
项和为
。
(1)求及
;
(2)令(其中
为常数,且
),求证数列
为等比数列。
(本题8分)在中,角
所对的边
分别为
,已知
。
(1)求的值;
(2)当,
时,求
及
的长。
(本题9分)在平面直角坐标系中,点
、
、
。
(1)求以线段为邻边的平行四边形两条对角线的长;
(2)当为何值时,
与
垂直;
(3)当为何值时,
与
平行,平行时它们是同向还是反向。
(本题9分)甲袋中有3只白球、7只红球、15只黑球;乙袋中有10只白球、6只红球、9只黑球。
(1)从甲袋中任取一球,求取到白球的概率;
(2)从两袋中各取一球,求两球颜色相同的概率;
(3)从两袋中各取一球,求两球颜色不同的概率。
(本题9分)给出下面的数表序列:
表1 |
表2 |
表3![]() |
… |
1 |
1 3 |
1 3 5 |
|
4 |
4 8 |
||
12 |
其中表有
行,第1行的
个数
是1,3,5,…,
,从第2行起,每行中的每个数都等于它肩上的两数之和。
(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表(不要求证明)
(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为,求数列
的前
项和