(本题满分12分)
某校举行的数学知识竞赛中,将参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
(1)求成绩在50—70分的频率是多少;
(2)求这次参赛学生的总人数是多少;
(3)求这次数学竞赛成绩的平均分的近似值.
如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,(I)求证:AC⊥BF;
(II)若二面角F—BD—A的大小为60°,求a的值
已知为实数,
(1)求导数
;(2)若
,求
在
上的最大值和最小值
(本小题满分14分)
已知其中e是自然对数的底数,
(1)讨论a=1时,的单调性、极值;
(2)是否存在实数a,使的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)求证:在(1)的条件下,。
(本小题满分12分)
已知椭圆:
的离心率为
,且过点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)垂直于坐标轴的直线与椭圆
相交于
、
两点,若以
为直径的圆
经过坐标原点.证明:圆
的半径为定值.