如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并说明你的理由;
(2)若AB=,BC=2,求⊙O的半径.
(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:
应聘者 |
专业知识 |
讲课 |
答辩 |
甲 |
70 |
85 |
80 |
乙 |
90 |
85 |
75 |
丙 |
80 |
90 |
85 |
按照招聘简章要求,对专业知识、讲课、答辩三项赋权 .请计算三名应聘者的平均成绩,从成绩看,应该录取谁?
(2)我市举行了某学科实验操作考试,有 、 、 、 四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.
①小厉参加实验 考试的概率是 ;
②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,小红距家的距离 随时间 变化的函数图象大致如图所示.
(1)小红从甲地到乙地骑车的速度为 ;
(2)当 时,求出路程 关于时间 的函数解析式;并求乙地离小红家多少千米?
已知:如图,四边形 , , , , , ,动点 从点 开始沿 边匀速运动,动点 从点 开始沿 边匀速运动,它们的运动速度均为 .点 和点 同时出发,以 、 为边作平行四边形 ,设运动的时间为 , .
根据题意解答下列问题:
(1)用含 的代数式表示 ;
(2)设四边形 的面积为 ,求 与 的函数关系式;
(3)当 时,求 的值;
(4)在运动过程中,是否存在某一时刻 ,使点 在 的平分线上?若存在,求出 的值;若不存在,请说明理由.
问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.
问题探究:
我们先从简单的问题开始探究,从中找出解决问题的方法.
探究一
用若干木棒来搭建横长是 ,纵长是 的矩形框架 、 是正整数),需要木棒的条数.
如图①,当 , 时,横放木棒为 条,纵放木棒为 条,共需4条;
如图②,当 , 时,横放木棒为 条,纵放木棒为 条,共需7条;
如图③,当 , 时,横放木棒为 条,纵放木棒为 条,共需12条;
如图④,当 , 时,横放木棒为 条,纵放木棒为 条,共需10条;
如图⑤,当 , 时,横放木棒为 条,纵放木棒为 条,共需17条.
问题(一 :当 , 时,共需木棒 条.
问题(二 :当矩形框架横长是 ,纵长是 时,横放的木棒为 条,
纵放的木棒为 条.
探究二
用若干木棒来搭建横长是 ,纵长是 ,高是 的长方体框架 、 、 是正整数),需要木棒的条数.
如图⑥,当 , , 时,横放与纵放木棒之和为 条,竖放木棒为 条,共需46条;
如图⑦,当 , , 时,横放与纵放木棒之和为 条,竖放木棒为 条,共需75条;
如图⑧,当 , , 时,横放与纵放木棒之和为 条,竖放木棒为 条,共需104条.
问题(三 :当长方体框架的横长是 ,纵长是 ,高是 时,横放与纵放木棒条数之和为 条,竖放木棒条数为 条.
实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .
拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.
某公司投入研发费用80万元 万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量 销售量),第一年该产品正式投产后,生产成本为6元 件.此产品年销售量 (万件)与售价 (元 件)之间满足函数关系式 .
(1)求这种产品第一年的利润 (万元)与售价 (元 件)满足的函数关系式;
(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
(3)在(2)的条件下,第二年,该公司将第一年的利润20万元 万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元 件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润 至少为多少万元.