(本小题满分10分)
已知函数,设关于
的方程
的两实数根为
,
的两实根为
、
,且
.
(1)若均为负整数,求
解析式;
(2)若,求
的取值范围.
设a1,a2,…,an为实数,证明:≤
.
已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).
已知n个正整数的和是1000,求这些正整数的乘积的最大值.
已知不等式|a﹣2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x,y,z都成立,求实数a的取值范围.
已知椭圆过点
,其焦距为
.
(1)求椭圆的方程;
(2)已知椭圆具有如下性质:若椭圆的方程为,则椭圆在其上一点
处的切线方程为
,试运用该性质解决以下问题:
(i)如图(1),点为
在第一象限中的任意一点,过
作
的切线
,
分别与
轴和
轴的正半轴交于
两点,求
面积的最小值;
(ii)如图(2),过椭圆上任意一点
作
的两条切线
和
,切点分别为
.当点
在椭圆
上运动时,是否存在定圆恒与直线
相切?若存在,求出圆的方程;若不存在,请说明理由.
图(1)图(2)