一机器可以按各种不同速度运转,其生产的产品有一些会有缺点,每小时生产有缺点的产品数随机器运转速度的不同而变化。下表为其试验数据:
速度(x转/秒) |
每小时生产有缺点的产品数(y个) |
||
8 |
6 |
||
9 |
8 |
||
10 |
10 |
||
13 |
12 |
(1)、画出散点图;
(2)、求机器运转速度与每小时生产有缺点的产品数之间的回归方程;(系数用分数表示)
(3)、若实际生产所允许的每小时生产有缺点的产品数不超过10件,那么机器的速度每秒不超过多少转?
已知的解为条件
,关于
的不等式
的解为条件
.
(Ⅰ)若是
的充分不必要条件时,求实数
的取值范围.
(Ⅱ)若是
的充分不必要条件时,求实数
的取值范围.
如图所示,作斜率为的直线
与抛物线
相交于不同的两点B、C,点A(2,1)在直线
的右上方.
(Ⅰ)求证:△ABC的内心在直线x=2上;
(Ⅱ)若,求△ABC内切圆的半径.
椭圆,椭圆
的一个焦点坐标为
,斜率为
的直线
与椭圆
相交于
两点,线段
的中点
的坐标为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为椭圆
上一点,点
在椭圆
上,且
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.
已知曲线的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(Ⅰ)求曲线的直角坐标方程与直线
的普通方程;
(Ⅱ)设点,若直线
与曲线
交于
,
两点,且
,求实数
的值.
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位已知直线 的参数方程为
(t为参数,
),曲线C的极坐标方程为
(Ⅰ)求曲线C的直角坐标方程。
(Ⅱ)设直线 与曲线C相交于A,B两点,当
变化时,求
的最小值