一机器可以按各种不同速度运转,其生产的产品有一些会有缺点,每小时生产有缺点的产品数随机器运转速度的不同而变化。下表为其试验数据:
速度(x转/秒) |
每小时生产有缺点的产品数(y个) |
||
8 |
6 |
||
9 |
8 |
||
10 |
10 |
||
13 |
12 |
(1)、画出散点图;
(2)、求机器运转速度与每小时生产有缺点的产品数之间的回归方程;(系数用分数表示)
(3)、若实际生产所允许的每小时生产有缺点的产品数不超过10件,那么机器的速度每秒不超过多少转?
在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图所标边长,由勾股定理有。设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥
,如果用
,
,
表示三个侧面面积,
表示截面面积,那么你类比得到的结论是。
在数列中,对于任意
,等式
成立,其中常数
.
(Ⅰ)求的值;
(Ⅱ)求证:数列为等比数列;
(Ⅲ)如果关于n的不等式的解集为
,求b和c的取值范围.
设函数,其中
.
(Ⅰ)若函数的图象在点
处的切线与直线
平行,求实数
的值;
(Ⅱ)求函数的极值.
如图,要建一间体积为,墙高为
的长方体形的简易仓库. 已知仓库屋顶每平方米的造价为500元,墙壁每平方米的造价为400元,地面造价忽略不计. 问怎样设计仓库地面的长与宽,能使总造价最低?最低造价是多少?
已知函数,其中
.
(Ⅰ)若函数为奇函数,求实数
的值;
(Ⅱ)若函数在区间
上单调递增,求实数
的取值范围.