(本小题满分12分)
甲、乙两名射手各进行一次射击,射中环数的分布列分别为:
![]() |
8 |
9 |
10 |
P |
0.3 |
0.5 |
a |
![]() |
8 |
9 |
10 |
P |
0.2 |
0.3 |
b |
(I)确定a、b的值,并求两人各进行一次射击,都射中10环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中10环,则射击结束,否则继续射击,但最多不超过4轮,求结束时射击轮次数的分布列及期望,并求结束时射击轮次超过2次的概率。
如图,AC是圆O的直径,点B在圆O上,,
交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,
(1)证明;
(2)(文科)求三棱锥的体积
(理科)求平面和平面
所成的锐二面角的正切值.
如图棱柱的侧面
是菱形,
,D是
的中点,证明:
(Ⅰ)∥面
(Ⅱ)平面平面
.
已知函数,其中实数
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求
的值.
在直角坐标系中,曲线
的参数方程为
为参数),以该直角坐标系的原点
为极点,
轴的正半轴为极轴的极坐标系下,曲线
的方程为
.
(1)求曲线的普通方程和曲线
的直角坐标方程;
(2)设曲线和曲线
的交点
、
,求
.
如图,点是以线段
为直径的圆
上一点,
于点
,过点
作圆
的切线,与
的延长线交于点
,点
是
的中点,连结
并延长与
相交于点
,延长
与
的延长线相交于点
.
(Ⅰ)求证:;
(Ⅱ)求证:是圆
的切线.