(本小题满分13分)在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率;
(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
已知数列的通项公式
,
,
试求的值,由此推测
的计算公式,并用数学归纳法加以证明.
已知函数其中(
).
(1)求的单调增区间;
(2)曲线)处的切线恒过y轴上一个定点,求此定点坐标.
已知函数,若函数
在其定义域内是增函数,求
的取值范围.
已知曲线
,点
是曲线
上的点
.
(1)试写出曲线
在点
处的切线
的方程,并求出
与
轴的交点
的坐标;
(2)若原点
到
的距离与线段
的长度之比取得最大值,试求试点
;
(3)设
与
为两个给定的不同的正整数,
与
是满足(2)中条件的点
的坐标,证明:
已知函数
对任意实数
均有
,其中常数
为负数,且
在区间
上有表达式
.
(1)求
,
的值;
(2)写出
在
上的表达式,并讨论函数
在
上的单调性;
(3)求出
在
上的最小值与最大值,并求出相应的自变量的取值.