(本小题共12分)
已知双曲线过点A(2,3),其一条渐近线的方程为
(I)求该双曲线的方程;
(II)若过点A的直线与双曲线右支交于另一点B,的面积为
,其中O为坐标原点,求直线AB的方程。
(本小题满分13分)设、
是函数
的两个极值点.
(Ⅰ)若,求函数
的解析式;
(Ⅱ)若求实数
的最大值;
(Ⅲ)函数若
求函数
在
内的最小值.(用
表示)
(本小题满分13分)如图,轴,点M在DP的延长线上,且
.当点P在圆
上运动时。
(1)求点M的轨迹C的方程;
(2)过点的切线
交曲线C于A,B两点,求△AOB面积S的最大值和相应的点T的坐标。
(满分12分)已知数列的前n项之和为
,满足
.
(Ⅰ) 证明:数列为等比数列,并求通项
;
(Ⅱ)设,求数列
中的最大项的值.
(本小题满分13分)在棱长为的正方体
中,
是线段
的中点,底面ABCD的中心是F.
(1) 求证:^
;
(2) 求证:∥平面
;
(3) 求三棱锥的体积。
(本小题满分12分)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如右表(单(辆)位: 按类型分层抽样的方法在这个月生产的轿车中抽取50辆, 其中有A类轿车10辆.
(1)求z的值.
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
轿车A |
轿车B |
轿车C |
|
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |