两直线分别过A(-a,0),B(a,0)且绕A,B旋转,它们在y轴上的截距分别为b1,b2,b1,b2=a2,求两直线交点的轨迹方程.
在抛物线上求一点,使该点到直线的距离最小,并求最小值.
已知抛物线的焦点在x轴上,直线y=2x+1被抛物线截得的线段长为,求此抛物线的标准方程.
已知动圆M经过点A(2,0)且与直线l:x=-2相切,求动圆圆心M的轨迹方程.
若直线y=kx-2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,求k的值.
已知抛物线上有一点,它到焦点的距离等于,求实数与的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号