(本小题满分12分)
某市举行一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本 |
人教A版 |
人教B版 |
||
性别 |
男教师 |
女教师 |
男教师 |
女教师 |
人数 |
6 |
3 |
4 |
2 |
(1)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(2)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量
的分布列和数学期望
.
(本小题满分15分)学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图:航天器运行(按顺时针方向)的轨迹方程为 ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为对称轴、
为顶点的抛物线的实线部分,降落点为
.观测点
,
同时跟踪航天器.
(1)求航天器变轨后的运行轨迹所在的曲线方程;
(2)试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为多少时,应向航天器发出变轨指令?
(本小题满分15分)如图,在四棱柱中,已知平面
,
且.
(1)求证:;
(2)在棱BC上取一点E,使得∥平面
,求
的值.
如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.
求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.
(本小题满分14分)已知直线和
.
问为何值时,有:(1)
?(2)
?
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的标准方程;
(2)设直线与圆相交于
两点,求实数
的取值范围;
(3)在(2)的条件下,是否存在实数,使得弦
的垂直平分线
过点
.