(
请考生在第22~23两题中任选一题做答,如果多做,则按所做的第一题记分。
22.(本小题满分12分)
已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=f(x2)的单调递增区间.
已知曲线C的极坐标方程为.
(1)若直线过原点,且被曲线C截得弦长最短,求此时直线
的标准形式的参数方程;
(2)是曲线C上的动点,求
的最大值.
已知函数
(1).求的周期和单调递增区间;
(2).若关于x的方程在
上有解,求实数m的取值范围.
已知全集U=R,集合,函数
的定义域为集合B.
(1)若时,求集合
;
(2)命题P: ,命题q:
,若q是p的必要条件,求实数a的取值范围.
已知为坐标原点,
=(
),
=(1,
),
.
(1)若的定义域为[-
,
],求y=
的单调递增区间;
(2)若的定义域为[
,
],值域为[2,5],求
的值.
将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数之和为6的概率;
(2)两数之积是6的倍数的概率;
(3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率。