(本小题满分12分)
在平面直角坐标系中,O为坐标原点,A、B、C三点满足
(Ⅰ)求证:A、B、C三点共线;
(Ⅱ)求的值;
(Ⅲ)已知
、
,
的最小值为
,求实
数
的值.
在直角坐标系xoy中,以o为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,M,N分别为C与x轴,y轴的交点
(1)写出C的直角坐标方程,并求出M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.
设函数.
(1)解不等式;
(2)若关于的不等式的解集不是空集,试求
的取值范围.
(本小题满分10分)
如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G。
(1)求证:圆心O在直线AD上;
(2)求证:点C是线段GD的中点。
(本小题满分12分)
设函数,其中
表示不超过
的最大整数,如
.
(1)求的值;
(2)若在区间上存在x,使得
成立,求实数k的取值范围;
(3)求函数的值域.
已知函数
(1)若函数y=f(x)的图象切x轴于点(2,0),求a、b的值;
(2)设函数y="f(x)" 的图象上任意一点的切线斜率为k,试求
的充要条件;(3)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证
。