(本小题满分12分)
已知某种产品共有6个,其中有2个不合格产品,质检人员从中随机抽出2个,
(1) 抽取产品中只有一个合格产品的概率是多少?
(2) 检测出不合格产品的概率是多少?
如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(1)求向量的坐标;
(2)设向量和
的夹角为θ,求cosθ的值
如图,已知正方体的棱长为a,M为
的中点,点N在
'上,且
,试求MN的长.
已知抛物线.过动点M(
,0)且斜率为1的直线
与该抛物线交于不同的两点A、B,
.
(Ⅰ)求的取值范围;
(Ⅱ)若线段AB的垂直平分线交轴于点N,求
面积的最大值.(14分)
如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)
河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?(12分)