游客
题文

(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率,右准线方程为
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于MN两点,且,求直线的方程.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知抛物线D的顶点是椭圆Q:的中心O,焦点与椭圆Q的右焦点重合,点是抛物线D上的两个动点,且
(1)求抛物线D的方程及y1y2的值;
(2)求线段AB中点轨迹E的方程;
(3)在曲线E上寻找一点,使得该点与直线的距离最近.

如图所示,在直三棱柱中,是棱的中点.
(1)证明:平面
(2)求二面角的余弦值.

已知函数上单调递增,在(-1,2)上单调递减,又函数.
(1)求函数的解析式;
(2)求证当

如图,平面,四边形是正方形,,点分别为线段的中点. 在线段上是否存在一点,使得点到平面的距离恰为?若存在,求出线段的长;

若不存在,请说明理由.

设函数.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)m恒成立,求实数m的取值范围

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号