(本小题满分13分)设函数.
(1)若时,函数
取得极值,求函数
在
处的切线方程;
(2)若函数在区间
内不单调,求实数
的取值范围.
(本小题满分12分)求函数的单调区间.
(原创)设、
.
(1)若在
上不单调,求
的取值范围;
(2)若对一切
恒成立,求证:
;
(3)若对一切,有
,且
的最大值为1,求
、
满足的条件.
如图,已知椭圆:
,其左右焦点为
及
,过点
的直线交椭圆
于
两点,线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点,且
、
、
构成等差数列.
(1)求椭圆的方程;
(2)记△的面积为
,△
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由.
如图,在三棱锥中,平面
平面
,
于点
,且
,
,
(1)求证:
(2)
(3)若,
,求三棱锥
的体积.