游客
题文

(本小题满分13分)
已知椭圆经过点,离心率为,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数的最大值为2.

(1)求的值及的最小正周期;
(2)在坐标纸上做出上的图像.

已知函数
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件,证明:

已知等比数列满足
(1)求数列的通项公式;
(2)在之间插入个数连同按原顺序组成一个公差为)的等差数列.
①设,求数列的前
②在数列中是否存在三项(其中成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

如图,某生态园欲把一块四边形地辟为水果园,其中.若经过上一点上一点铺设一条道路,且将四边形分成面积相等的两部分,设

(1)求的关系式;
(2)如果是灌溉水管的位置,为了省钱,希望它最短,求的长的最小值;
(3)如果是参观路线,希望它最长,那么的位置在哪里?

已知,函数
(1)当时,写出函数的单调递增区间;
(2)当时,求函数在区间[1,2]上的最小值;
(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号