(本小题满分13分)
如图,已知正三棱柱的底面正三角形的边长是2,D是
的中点,直线
与侧面
所成的角是
.
⑴求二面角的大小;
⑵求点到平面
的距离.
在平面几何中,我们学习了这样一个命题:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比。请你类比写出在立体几何中,有关四面体的相似性质,并证之。
已知在四面体ABCD中,= a,
= b,
= c,G∈平面ABC.则G为△ABC的重心的充分必要条件是
(a+b+c);
如图,已知边长为的正三角形
中,
、
分别为
和
的中点,
面
,且
,设平面
过
且与
平行。 求
与平面
间的距离?
已知直三棱柱中,
,点N是
的中点,求二面角
的平面角的大小。
如图1,在多面体ABCD—A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E,F两点,上、下底面矩形的长、宽分别为c,d与a,b,且a>c,b>d,两底面间的距离为h。
(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;
(Ⅱ)证明:EF∥面ABCD;
(Ⅲ)在估测该多面体的体积时,经常运用近似公式V估=S中截面·h来计算.已知它的体积公式是V=(S上底面+4S中截面+S下底面),试判断V估与V的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)