如图1,在多面体ABCD—A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E,F两点,上、下底面矩形的长、宽分别为c,d与a,b,且a>c,b>d,两底面间的距离为h。
(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;
(Ⅱ)证明:EF∥面ABCD;
(Ⅲ)在估测该多面体的体积时,经常运用近似公式V估=S中截面·h来计算.已知它的体积公式是V=
(S上底面+4S中截面+S下底面),试判断V估与V的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)
如图所示,在四棱锥
中,底面ABCD是边长为a的正方形,侧面
底面ABCD,且
,若E,F分别为PC,BD的中点.
(1)求证:
平面PAD;
(2)求证:平面PDC
平面PAD;
(3)求四棱锥
的体积.
设函数
(1)写出函数
的最小正周期及单调递减区间;
(2)当
时,函数
的最大值与最小值的和为
,求不等式
的解集.
设关于
的一元二次方程
.
(1)若
,
都是从集合
中任取的数字,求方程有实根的概率;
(2)若
是从区间[0,4]中任取的数字,
是从区间[1,4]中任取的数字,求方程有实根的概率.
已知数列
的前n项和
.
(1)求数列
的通项公式;
(2)若数列
是等比数列,公比为
,且满足
,求数列
的前n项和
.
(本题满分10分)选修4 - 5 :不等式选讲
设函数,
.
(I)求证
;
(II)若
成立,求x的取值范围.