(本小题满分12分)
如图:已知△PAB所在的平面与菱形ABCD所在的平面垂直,且PA=PB=AB,∠ABC=60°,E为AB的中点.
(Ⅰ)证明:CE⊥PA;
(Ⅱ)若F为线段PD上的点,且EF与平面PEC的
夹角为45°,求平面EFC与平面PBC夹角的
余弦值.
(本小题满分14分)已知数列{an}是等差数列,{bn}是等比数列,且满足a1+a2+a3=9,b1b2b3=27.若a4=b3,b4-b3=m.
(1)当m=18时,求数列{an}和{bn}的通项公式;
(2)若数列{bn}是唯一的,求m的值.
(本小题满分14分)如图,在四面体中,
,点
是
的中点,点
在线段
上,且
.
(1)若∥平面
,求实数
的值;
(2)求证:平面平面
.
(本小题满分14分)
已知的三个内角
所对的边分别为
,向量
,
,且
.
(1)求角A的大小;
(2)若,求证:
为等边三角形.
已知实数,函数
.
(1)当时,讨论函数
的单调性;
(2)若在区间
上是增函数,求实数
的取值范围;
(3)若当时,函数
图象上的点均在不等式
,所表示的平面区域内,求实数
的取值范围.
(本小题16分)已知数列的各项均为正数,数列
,
满足
,
.
(1)若数列为等比数列,求证:数列
为等比数列;
(2)若数列为等比数列,且
,求证:数列
为等比数列.