(本小题满分12分)
某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.
(Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?
已知:(
)是方程
的两根,且
,
.
(1)求
的值;(2)设
,求证:
;(3)求证:对
有
w。.w..
设函数(1)当
时,求函数
在
上的最大值;(2)记函数
,若函数
有零点,求
的取值范围.
已知如图,椭圆方程为.P为椭圆上的动点,
F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角
平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.
(1)求M点的轨迹T的方程;(2)已知、
,
试探究是否存在这样的点:
是轨迹T内部的整点
(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?
若存在,求出点Q的坐标,若不存在,说明理由.
右图为一简单组合体,其底面ABCD为正方形,平面
,
,且
,(1)求证:BE//平面PDA;
(2)若N为线段的中点,求证:
平面
;
(3)若,求平面PBE与平面ABCD所成的二面角的大小.
已知复数,
,且
.(1)若
且
,求
的值;(2)设
=
,已知当
时,
,试求
的值.