已知函数的图象经过点
,曲线在点
处的切线恰好与直线
垂直.
(1)求实数的值.
(2)若函数在区间
上单调递增,求
的取值范围.
已知双曲线的焦距为
,其一条渐近线的倾斜角为
,且
,以双曲线
的实轴为长轴,虚轴为短轴的椭圆为
.
(1)求椭圆的方程;
(2)设点是椭圆
的左顶点,
为椭圆
上异于点
的两动点,若直线
的斜率之积为
,问直线
是否恒过定点?若横过定点,求出该点坐标;若不横过定点,说明理由.
(本小题满分12分)
为了调查学生星期天晚上学习时间利用问题,某校从高二年级1000名学生(其中走读生450名,住宿生550名)中,采用分层抽样的方法抽取名学生进行问卷调查,根据问卷取得了这
名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①
,②
,③
,④
,⑤
,⑥
,⑦
,⑧
,得到频率分布直方图如下,已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人:
(1)求的值并补全下列频率分布直方图;
(2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的名学生,完成下列
列联表:
利用时间充分 |
利用时间不充分 |
总计 |
|
走读生 |
|||
住宿生 |
10 |
||
总计 |
据此资料,你是否认为学生“利用时间是否充分”与走读、住宿有关?
(3)若在第①组、第②组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“学习时间少于60分钟”的学生人数为,求
的分布列及期望;
参考公式:
如图,多面体中,
两两垂直,且
,
.
(1)若点在线段
上,且
,求证:
;
(2)求直线与平面
所成的角的正弦值.
设数列的前
项和
满足:
,等比数列
的前
项和为
,公比为
,且
.
(1)求数列的通项公式;
(2)设数列的前
项和为
,求证:
.
选修4—5:不等式选讲
设.
(1)当时,解不等式
;
(2)若对任意
恒成立,求实数
的取值范围.